

AND HOW BIOCATALYSIS WITH ENZYMES ARE
ADDRESSING EACH PRINCIPLE

Prevent waste

Contrary to harsh chemicals, enzymes are remarkably specific in their synthesis. No by-products are generated, and the enzymes themselves are completely biodegradable.

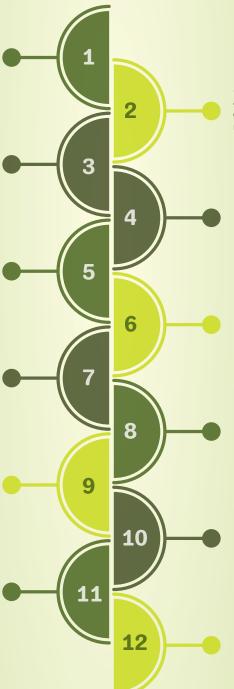
Design less hazardous chemical syntheses

Bio-transformations are mainly performed in water, or using Class 3 solvents, which implies a lower toxic potential compared to the use of chemical catalysts.

Use safer solvents and reaction conditions

As product transformations in water, or Class 3 solvents, can be performed under ambient/moderate temperature conditions, the use of biocatalysts implies little safety risk.

Use renewable feedstocks


Enzymes work well on a renewable starting material, as both are sourced from nature. Enzymes themselves are manufactured from large-scale fermentation using a microbial source a starting material.

Use catalysts, not stoichiometric reagents

Enzymes are effective biocatalysts where a small amount can go a long way. When immobilized in smaller granulates, the recyclability increases even further.

Analyze in real time to prevent pollution

High selectivity and no formation of by-products, prevent waste treatment and/or pollution.

Maximize atom economy

As the starting material is selectively converted into the desired product only, enzyme biocatalysis contributes to maximizing the atom economy of the overall process.

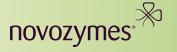
Design safer chemicals and products

Enzymes are per definition non-toxic, and any replacement of metal catalysts or toxic chemicals will imply a safer process with less waste.

Increase energy efficiency

Biocatalysts reduce both the number of synthetic steps, and the condition requirements for reactions with biocatalysts (no temperature/pressure requirements). Both imply a lower energy consumption.

Avoid chemical derivatives


The unparalleled selectivity towards the desired end-product without the need for multiple protection/deprotection steps, avoids the use of several chemicals, including any of their derivative steps.

Design chemicals and products to degrade after use

Enzymes are biodegradable; hence no additional effluent treatment is required.

Minimize the potential for accidents

With the ease of handling, safe and sustainable processes, biocatalysis also minimize the risk of accidents while handling dangerous chemicals.

